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1. Selected features
1.1. General Statistics

Images
Classes
Classes in use

Annotations

Annotations per images
Images with no annotations
Median image resolution
Smallest annotation

Largest annotation

Most annotations in an image
Least annotations in an image

1.2. Image Width and Height Distribution
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These histograms depict the distributions of image height and width. It's important to note that if certain images have been

200

rescaled or padded, the histograms will represent the size after these operations.
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1.3. Color Distribution
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Here's a comparison of RGB or grayscale intensity intensity (0-255) distributions across the entire dataset, assuming RGB

channel ordering.
It can reveal discrepancies in the image characteristics between the two datasets, as well as potential flaws in the

augmentation process.
E.g., a notable difference in the mean value of a specific color between the two datasets may indicate an issue with the

augmentation process.
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1.4. Image Brightness Distribution
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This graph shows the distribution of the brightness levels across all images.
This may for instance uncover differences between the training and validation sets, such as the presence of exclusively
daytime images in the training set and nighttime images in the validation set.

1.5. Image Duplicates
Train duplicated images:
There are 41 duplicated images appearing 100 times across the dataset.

Validation duplicated images:
There are 5 duplicated images appearing 10 times across the dataset.

There are 18 duplicates between train and validation appearing 30 times in the train image directory, and 19 times in the
validation image directory.
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1.6. Visualization of Samples
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The sample visualization feature provides a visual representation of images and labels. This visualization aids in understanding
of the composition of the dataset.

0 Notice: Only 12 random samples are shown.
You can increase the number of images by changing 'n_cols™ and "n_rows" in the configuration file.
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1.7. Bounding Box Density
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The heatmap represents areas of high object density within the images, providing insights into the spatial distribution of
objects. By examining the heatmap, you can quickly detect whether objects are predominantly concentrated in specific regions
or if they are evenly distributed throughout the scene. This information can serve as a heuristic to assess if the objects are
positioned appropriately within the expected areas of interest.

U Notice: Only the 12 classes with highest density are shown.
You can increase the number of classes by changing ‘'n_cols™ and 'n_rows" in the configuration file.
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1.8. Distribution of Bounding Box Area

AlcoholPercentage split
[ train
Appellation AOC DOC AVARegion 1 val

Appellation QualityLevel

CountryCountry

Distinct Logo

Established YearYear

VTVW

Class

Maker-Name

Organic

Sustainable

Sweetness-Brut-SecSweetness-Brut-Sec

TypeWine Type

VintageYear

TYTYrT

20 40 60 80
Bounding Box Area (in % of image)

This graph shows the frequency of each class's appearance in the dataset. This can highlight distribution gap in object size
between the training and validation splits, which can harm the model's performance.

Another thing to keep in mind is that having too many very small objects may indicate that your are downsizing your original
image to a low resolution that is not appropriate for your objects.
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1.9. Distribution of Bounding Box per image
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These graphs shows how many bounding boxes appear in images.
This can typically be valuable to know when you observe a very high number of bounding boxes per image, as some models

4 6 8

include a parameter to filter the top k results.

1.10. Distribution of Bounding Box Width and Height
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These heat maps illustrate the distribution of bounding box width and height per class.
Large variations in object size can affect the model's ability to accurately recognize objects.
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1.11. Class Frequency
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Frequency of appearance of each class. This may highlight class distribution gap between training and validation splits.
For instance, if one of the class only appears in the validation set, you know in advance that your model won't be able to learn
to predict that class.

1.12. Distribution of Class Frequency per Image
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This graph shows how many times each class appears in an image. It highlights whether each class has a constant number of
appearances per image, or whether there is variability in the number of appearances from image to image.
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1.13. Intersection of Bounding Boxes
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The distribution of the box Intersection over Union (IoU) with respect to other boxes in the sample. The heatmap shows the
percentage of boxes that overlap with loU in range [0..T] for each class. Intersection of all boxes is considered (Regardless of
classes of corresponding bboxes).

0 Notice: To better understand how to tackle the data issues highlighted in this report, explore our comprehensive
course on analyzing computer vision datasets.
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